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SUMMARY

A quasi-steady scheme for the analysis of aerodynamic interaction between a propeller and a wing has
been developed. The quasi-steady analysis uses a 3D steady vortex lattice method for the propeller and
a 3D unsteady panel method for the wing. The aerodynamic coupling is represented by periodic loads,
which are decomposed into harmonics and the harmonic amplitudes are found iteratively. Each stage of
the iteration involves the solution of an isolated propeller or wing problem, the interaction being done
through the Fourier transform of the induced velocity field. The propeller analysis code was validated by
comparing the predicted velocity field about an isolated propeller with detailed laser Doppler velocimeter
measurements, and the quasi-steady scheme by comparison with mean loads measured in a wing–pro-
peller experiment. Comparisons have also been made among the fluctuating loads predicted by the
present method, an unsteady panel scheme and a quasi-steady vortex lattice scheme. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

It has been reported that lift augmentation and drag reduction on a wing can result from
propeller–wing interaction. As will be shown later, a number of attempts have been made to
solve the problems arising from the interaction of the wing–propeller system. Various
quasi-steady and unsteady methods were applied to compute the unsteady loads resulting from
the interaction. These unsteady loads must be evaluated for the aeroelastic analysis of an
interacting system. It is the objective of this study to present an efficient numerical method for
the prediction of the unsteady aerodynamic forces that arise from the interaction.

Several studies have been made of the effects of the propeller slipstream on wing perfor-
mance, using a variety of slipstream models. Kleinstein and Liu [1] treated the slipstream as a
simple circular jet. Loth and Loth [2] added rigid rotation. Miranda and Brennan [3] used a
more realistic vortex tube model of the slipstream. In all three studies, the propwash field was
prescribed and the wing performance was obtained from the lifting line theory. In contrast,
Kroo [4] examined the optimization of integrated performance using a relatively simple model
of the interference between rotor and wing.

Unsteady loads have been calculated by Rangwalla and Wilson [5] using a time marched
incompressible panel method with a free wake model. Lee [6] used a quasi-steady vortex lattice
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method for wing–propeller interference. This scheme does predict the unsteady loads, but the
neglect of spanwise vortex shedding, which is implicit in the quasi-steady approximation, casts
some doubt on the accuracy of the predicted fluctuations, particularly for the highly reduced
frequencies presented on the wing. Recently, Cho and Williams [7] used a lifting surface panel
method in the frequency domain for wing–propeller interference. This scheme was developed
by Williams [8,9] for the aerodynamic and aeroelastic analysis of single rotation propellers. In
that application, the blade loading is represented by a single frequency. The extension to
wing–propeller interference requires that loads be represented with multiple harmonics, which
interact through the induced velocity field.

The induced velocity field calculation has been validated by comparison with laser Doppler
velocimeter (LDV) measurements taken by Sundar [10] around a single rotation propeller.
Similar LDV data, for a different rotor, were reported by Lepicovski and Bell [11]. Iterative
velocity field calculations for Sundar’s configuration based on a Euler code and vortex lattice
model have been done by Usab et al. [12].

The present wing–propeller interference calculation has been validated by comparisons with
wind tunnel measurements made by Witkowski [13], with Lee’s quasi-steady vortex lattice
analysis [6] and with Cho and Williams’ unsteady panel analysis [7] of the same configuration.

2. METHODOLOGY

2.1. Propeller

A vortex lattice method (VLM) is used to model the propellers. A vortex line is the solution
of the Laplace equation, which is a governing equation of incompressible, inviscid and
potential flow, and the flow tangency boundary condition is used.

92F (x, y, z)=0 : governing equation, (1)

9(F+F0) ·n� =0 : boundary equation, (2)

where F is the velocity potential that is produced by a singularity element, F0 is the velocity
potential of free stream and n� is the normal unit vector on the blade surface. The horseshoe
vortices used are composed of bound vortices on the 1/4 chord line, which represent the lifting
component and trailing vortices that represent the wake. Trailing vortex, helical vortex lines
must continue infinitely in the flow in order not to violate Helmholtz’s law. Induced velocity
caused by a vortex line can be calculated by the Biot–Savart law. In order to make the normal
velocity component (which is induced at each control point by every lifting line) satisfy
boundary condition, the following linear equation is used:

VRj=%
i

Gj

4p
Fij, (3)

(normal velocity induced at the jth control point by vortices) where F represents the
aerodynamic force that can be obtained by the integration of pressure difference. Using
Equation (3) the following matrix equation can be set up:

ARR·G=VR. (4)

Then ARR is the known aerodynamic influence coefficient (AIC) matrix between the rotor
lattices, and VR is the upwash of the rotor, which is the boundary condition.
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Using calculated vortex strength G, the aerodynamic forces on the propeller can be
calculated using the Kutta–Joukowski law, and the AIC matrix between the rotor (propeller)
and the wing, AWR, will be determined by using the Biot–Savart law. The pressure difference
of a horseshoe vortex element on the jth radial position can be represented as follows:

Dprj
=r
(rjV)2+V�2

DGj

Drj

. (5)

The application of the VLM to model the propellers, as described above, has been given by
several authors [14–17]. The detailed equation used for the present VLM for propellers can be
found easily in [16–18]. The compressibility effect on the propeller can be accounted for by
using the Prandtl–Glauert rule.

2.2. Wing

A non-planar lifting surface method used for analysis of the wing is based on the linear
compressible lifting surface theory. To explain briefly the method used, consider linearized
compressible flow in which the initial disturbances vanish from the lifting surfaces. Induced
velocity at an arbitrary point x� can be solved by the momentum equation, small disturbance
theory and the boundary condition of lifting surface with the assumption that flow is inviscid,
irrotational and isentropic. A point on lifting surface x� 0 with unit normal n� 0 is assigned a
transformed pressure differential Dp=rU0P acting in the direction +n� 0. The lifting surface
induces a transformed velocity Ub W at an arbitrary point x� , which is given by an integral over
the lifting surface.

Ub W(x� )=&&
PW(x� 0)Kb W(x� , x� 0) dA0, (6)

where Kb W is the kernel function of the planar wing. The integral can be discretized by
assuming a piecewise constant load on each wing panel,

AWW·PW=VW. (7)

AWW is the aerodynamic influence coefficient matrix between the wing panels, and VW is the
upwash of the wing. Then, AWW is expressed as follows:

AWW=
&&

wing

KW(xW−x0, yW−y0) dx0 dy0, (8)

where xW and yW denote arbitrary control point positions on the wing.
The AIC matrix between the wing and the propeller, ARW, can be expressed as follows, when

the non-planar kernel, KWnon-planar
, is used:

ARW=
&&

wing

KWnon-planar
(xR−x0, yR−y0, zR) dx0 dy0, (9)

where xR, yR, zR are arbitrary field points on the rotor plane. The explicit expressions of K for
both planar and non-planar cases will be found in References [19,20].

2.3. Wing–propeller interaction

The quasi-steady interaction between a wing and rotor can be expressed by a pair of linear
relations between the instantaneous normal velocity (V) and the pressure difference (Dp) on
the respective lifting surfaces.
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VR=ARR·DpR+ARW·DpW,
VW=AWR·DpR+AWW·DpW.

(10)

The coefficients of A are linear integral space–time operators, as explained already. The
solution (for Dp) can clearly be decomposed into the sum of rotor-driven (VW=0) parts. It is
assumed that the wing and rotor are rigid and the rotor is at zero incidence.

The load on the jth blade, DpRj can be represented as the function of vortex strength Gj that
varies with radius (Equation (5)). The wing load, DpW, can be expanded in harmonics by the
periodicity of the interaction

DpW=%
n

PWn
einNVt, (11)

where V� is the free stream velocity, V the angular velocity of rotor, N the number of rotor
blades, n the harmonic index.

The objective is to compute the vortex strength G and the harmonic load coefficient PWn
for

given normal velocities V. By substituting Equations (5) and (11) into Equation (10) and
separating the harmonics, we get

A( RR·G=V( R,
A( WW(nNV) ·PWn

=V( Wn
,

(12)

where A( RR denotes the reference blade operator and A( WW(v) denotes the wing operator for
simple harmonic motion with frequency v. V( R is the normal velocity on the blade surface
modified by the induced velocity from the wing. V( Wn

is the complex harmonic amplitudes of
the normal velocity on the wing surface modified by the induced velocity from the blade.
Given V( , Equation (12) represents separate problems for the rotor and wing. Of course, the V(
values are not given, but depend, in a complicated way, on the loads. The induced velocity
field by the rotor is obtained by the Biot–Savart law. This velocity field, being of the period
Du=2p/N by the rotation of the rotor, can be Fourier-expanded in the rotor frame, u( , with
frequency V.

u� R(u( )= %
�

k= −�
Ub Rk

(kV) eiku( , (13)

where

Ub Rk
=

1
Du

& Du

0

u� R(u( ) e− iku( du( , k=0, 91, . . . (14)

Ub R−k
=complex conjugate of Ub Rk

.

The velocity field of Equation (13) in u( is transformed to the wing frame (u=u( −Vt, Figure
2).

u� R(u, t)=%
k

[Ub Rk
eiku] eikVt. (15)

The velocity field Ub Rk
eiku corresponds to the wing frame frequency kV and therefore

contributes, to the wing normal velocity V( Wk
in Equation (12), an amount

DV( Wk
= −n� W·Ub Rk

eiku, (16)

where n� W is the normal to the wing camber surface.
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Similarly, each harmonic PWn
on the wing produces a velocity field that is a simple harmonic

in the frame,

u� Wn
=Ub Wn

(u) einNVt, (17)

where the complex amplitude is found by an integral over the wing,

Ub Wn
=
&&

PWn
(x� 0) Kb W(x� , x� 0) dA0. (18)

Note that the wing operator A( WW is a normal projection of Equation (18) on the wing. This
velocity field too can be Fourier-expanded in u and transferred to the rotor frame,

u� Wn
=%

k

[Ub Wnk
eiku( ] ei(nN−k)Vt, (19)

where

Ub Wnk
=

1
2p

& 2p

0

Ub Wn
(u) e− iku du. (20)

The velocity field Ub Wnk
e− iku( corresponds to the rotor frame frequency (nN−k)V. But due to

steady state analysis of the rotor, only the mean value (0th frequency, k=0) in Equations (19)
and (20) contributes, to the rotor normal velocity V( R in Equation (12), an amount,

DV( R= −n� R·Ub Wn 0
, (21)

where

Ub Wn 0
=

1
2p

& 2p

0

Ub W0
(u) du

and n� R are normal to the reference blade.

Figure 1. Propeller–wing configuration.
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2.4. Iterati6e scheme

The calculation is performed iteratively in the following sequence.

For each rotor harmonic:
(1) Compute prop loads.
(2) Compute propwash field around wing.
(3) Fourier decompose propwash.
(4) Distribute Fourier component to wing normal velocity harmonics.

For each wing harmonic:
(5) Compute wing loads.
(6) Compute wingwash field around prop.
(7) Fourier decompose wingwash.
(8) Distribute only 0th harmonic Fourier component to prop normal velocity harmonics.

This sequence is repeated to convergence. On initial entry, which could be either step (1) or
(5), the interaction is ignored, and only one harmonic load is computed.

At the discrete level, the solution of Equation (12) involves the inversion of a large system
of simultaneous linear equations. To avoid repetitive calculation, the inverse influence coeffi-
cient matrix for each harmonic can be computed once and stored. The load calculation in steps
(1) and (5) of the iteration is then reduced to a matrix–vector multiplication.

3. RESULTS

Most of the results reported here were obtained using seven chordwise panels on both the wing
and rotor. Roughly 12–15 radial rows were used on the rotor blade and about 30 spanwise on
the wing (concentrated in the disk plane). These numbers are adequate to resolve the
integrated loads to within a few percent [7].

3.1. Isolated propeller 6elocity field

To validate the present 3D VLM formulation, the velocity calculation was tested on an
isolated propeller, for which Sundar [10] has made detailed LDV measurements. The propeller
has two blades, whose tip radius is 6 in. The blades have a straight, constant chord and have
an aspect ratio of 3 with a fixed pitch of 45.4° at 3/4 blade tip radius, an NACA 0010 airfoil
sections and a helical twist distribution.

Figure 3 shows the predicted circumferentially averaged velocities, excluding blade thickness
and centerbody, using the present 3D vortex lattice formulation. It can be seen in the figure
that the axial velocity components are bigger than free stream velocity (i.e. Ux/U0\1), and the
radial velocity components are negative (i.e. Ur/U0B0), which shows that the expected axial
acceleration balanced by a radial inflow. The mean swirl is zero upstream and constant
downstream from the rotor. The circumferential variation of velocity at one station is shown
in Figure 4. In the figure caption, x/R=0.267 and r/R=0.933 imply that the LDV probe is
located axially, slightly apart downstream from the trailing edge of the blade root and radially
inboard near the tip. The present result is compared with the measured data to validate the
present 3D vortex lattice formulation for the propeller. It can be easily seen for the figure
that the present VLM calculation shows good agreement with measured data in axial velo-
city components, and a small amount of constant offset in tangential and radial velocity

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1027–1042 (1999)



PROPELLER–WING INTERACTION 1033

Figure 2. Co-ordinate system.

components (note different ordinate scales for the three velocity components in the figure).
Although the calculated tangential and radial velocity show the same azimuthal variation with
measured data, the fixed helical wake model used in the present method produced a constant
amount offset and small phase shift. It can be concluded from this result that the blade loading
for the case considered here is well-predicted using the present VLM.

Figure 5 gives the harmonic decomposition of the tangential velocities at a downstream
station of x/R=1.00 as a function of the spanwise location. In the figure, the non-zero (8°)
angle of attack of the wing produces the asymmetry of the curves about y/R=0.0. This result
corresponds to the first-order wing upwash at the quarter chord in the wing–propeller
calculation discussed in the next section. Note that the amplitudes decrease rapidly with
increasing frequency (n=5 corresponds to a 10V wing excitation). Based on this result, the
wing–propeller interaction was truncated at the fifth harmonic.

3.2. Propeller–wing interaction

Results will be presented for the propeller–wing configuration shown in Figure 1, which is
the same as Cho’s [7]. The propeller is identical to the rotor examined in the last section. The
wing is rectangular, AR=8.25 (chord length=8 in., wing span=66 in.), with NACA 0010
section. The wing and rotor are separately articulated and mounted so that the axis of rotation
lies in the wing symmetry plane (at a=8°). The free stream Mach number is 0.1 and the two
advance ratios of J=1.1 and J=1.66 considered here correspond to the blade tip Mach
numbers of 0.29 and 0.21 (blade root Mach numbers of 0.13 and 0.12) respectively, where the
compressibility effect is almost negligible.

Wing and blade thickness are ignored in the calculations because of the relatively large
separation between the two. The system is assumed to be symmetric about the wing mid-span.
In contrast, the experiment used a wall mounted semi-span model, and Lee [6] used a full span
wing with a single tip mounted rotor in this quasi-steady vortex lattice simulation.

We will first examine some properties of the mean loading, for which there are experimental
data. The characteristic features of the unsteady fluctuations will then be described, with
comparisons with Lee’s [6] quasi-steady analysis and Cho’s [7] unsteady analysis. Cho’s
unsteady results are based on 3D unsteady lifting surface formulation for both propeller and
wing, and Lee’s quasi-steady results use steady VLM for both propeller and wing, whereas the
present method models the propeller with vortex lattice and the wing with 3D unsteady panels,
as explained in Section 2.
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Figure 6 shows the effect of the propeller on the mean sectional lift distribution on the wing
half span for a case where a=8° and J=1.66. Three results are shown. The curve labeled
‘Wing Only’ is the predicted load without a propeller. The curve labeled ‘0th Propwash’ is the
result of simply imposing the isolated propeller wake swirl on the wing without accounting for
the back influence of the wing on the rotor. Finally, the curve labeled ‘Full Interaction’ shows
the mean loading ith complete interaction. Note that the prop effect of complete interaction is
to slightly decrease the loads below the level set by the ‘0th Propwash’ case, but the change is
very small. A similar comparison for the propeller is shown in Figure 7. There is practically no
change in the main thrust loading due to the interaction.

Figure 3. Predicted averaged axial, tangential and radial velocity.
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Figure 4. Downstream velocity profiles (x/R=0.267, r/R=0.933, J=1.66).

The total (time-averaged) lift and drag on the wing as a function of the angle of attack are
shown in Figures 8 and 9 respectively. Results of the present method, the unsteady method
(Cho), the quasi-steady method (Lee), and the experiment are shown. The calculations agree
remarkably well with the experiment, apart from the expected roll-off of the measured values
at the high angle of attack (the wing stalls around a=14°). The drag includes a viscous
component (whose magnitude is estimated from sectional data in Reference [21]) as well as
induced drag, which is indicated by the dotted line in Figure 9. Note that the induced drag is

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1027–1042 (1999)
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Figure 5. Fourier transformed upwash distribution (J=1.66, a=8°, x/R=1.00).

slightly negative at low incidence, reflecting the fact that the prop swirl actually induces thrust
on the wing.

At the advance ratio J=1.66, the corresponding reduced frequency k on the wing (based on
the fundamental frequency of 2V, wing chord, and free stream velocity) is 5.05, and the local
reduced frequency k on the prop (based on V, prop chord and relative velocity) is 0.36.

As mentioned in Section 1, lift augmentation and drag reduction result from the propeller–
wing interaction. This drag reduction is shown in Figure 10. DCD is the difference between CD

of the interacting system and wing performance alone for the same value of CL. The present
method shows a large value with comparisons with the unsteady, the quasi-steady calculation
and the experiment. It is considered that this is due to the difference in Figure 9. Figure 11
shows the time history of the wing sectional lift coefficient after a propeller–wing interaction.

Figure 6. Mean sectional lift coefficient (J=1.66, a=8°).
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Figure 7. Mean sectional thrust on the propeller (J=1.66, a=8°).

Note that CL is largest at around f=30°, when the propeller wake hits around the quarter
chord of wing.

Figure 12 shows the time history of total lift on the wing for the heavily loaded prop case
at J=1.10 with comparisons with Cho’s [7] unsteady analysis and Lee’s [6] quasi-steady
analysis. It can be easily seen in the figure that the present method is close to Cho’s 0th
propwash unsteady result, whereas Lee’s quasi-steady results deviates from the unsteady result
not only in magnitude but also in phase. This proves that Lee’s quasi-steady method is unable
to predict the fluctuating wing loads at the highly reduced frequency k on the wing (based on
the fundamental frequency of 2V, wing chord, and free stream velocity) of 7.61, which was
pointed out already in the Section 1. Figure 13 shows the contributions of harmonics to the
present result in Figure 12. It can be concluded from Figures 12 and 13 that the higher
harmonics have a negligible effect on the present quasi-steady solution in contrast to the Cho’s

Figure 8. Mean total lift coefficient.
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Figure 9. Mean total drag coefficient.

unsteady solution. In contrast to the result of Figure 12, the sectional thrust on the propeller
at 3/4 blade tip radius for the same advance ratio of J=1.10, shown in Figure 14, shows
clearly that the unsteady effects are not important here since the present, the Lee’s quasi-steady
and the unsteady analysis give basically the same time histories (the mean value offset between
the three is the discretization error coming from the prop-only results). This is understandable
since the local reduced frequency k on the prop (based on V, prop chord and relative velocity)
is only 0.40 for the case.

Figure 10. Drag reduction vs. lift due to interaction.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1027–1042 (1999)



PROPELLER–WING INTERACTION 1039

Figure 11. Time history of sectional lift coefficient (J=1.66, a=8°).

Note that, in the absence of comparable unsteady measured data, the unsteady panel
method used for the wing can give poor results at extremely high frequencies. This may
become a serious problem when the propeller advance ratio decreases (higher rpm) and when
the number of blades increases (high blade passing frequency).

Figure 12. Time history of wing lift (J=1.66, a=8°).
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Figure 13. Contributions of harmonics to lift time history (J=1.10, a=8°).

4. CONCLUSIONS

The lifting line method used here has been shown to predict a good agreement with measured
velocity field data for a single rotation propeller and a generally good agreement with
measured loads on a wing–propeller system. The unsteady load predictions relatively agree
with Lee’s quasi-steady analysis and Cho and Williams’ unsteady analysis on the rotor, where
the reduced frequencies are relatively low, but disagree on the wing, where the reduced
frequencies are high. But the present method is closer to unsteady analysis than to Lee’s
quasi-steady analysis.

Figure 14. Time history of blade sectional thrust (r/R=0.75, J=1.10, a=8°).
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The results of the propeller–wing interaction analysis indicate that useful performance
predictions can be made with a simplified model, wherein the circumferentially averaged
(isolated) propwash is imposed on the wing to get the modified steady wing loading, and
circumferentially averaged (isolated) wingwash is imposed on the prop to get the modified
steady blade loading. All other interaction terms appear to have only a small effect on the
mean performance.

It was also found that for the cases examined using the present quasi-steady analysis
method, good estimates of the load fluctuations were obtained with just the first few
harmonics. However, care should be taken dealing with extremely high frequency problems.
What is required is a better numerical scheme for evaluating high frequency response. Much
more importantly, what is required is the experimental data at high frequencies with which to
compare.

APPENDIX A. NOMENCLATURE

A linear integral time–space operator (aerodynamic influence coefficient)
complex harmonic operatorA(
aspect ratioAR

CD drag coefficient
CL lift coefficient

aerodynamic forcesF
J advance ratio
k reduced frequency based on chord

kernel function of wingK
total number of rotor latticesm
harmonic indexn

n� unit normal vector on the blade surface
N number of rotor blade

pressure differenceDp
P harmonic load coefficient

rotor radiusR
r, u, z cylindrical co-ordinate system
u� induced velocity

transformed velocityUb
upwash (instantaneous normal velocity)V
complex harmonic amplitude of the normal velocityV(

x, y, z Cartesian co-ordinate system

Greek letters

angle of attacka

f phase angle between the reference propeller blade and the wing
r density

frequency of simple harmonic motionv

vortex strengthG
velocity potentialF
angular velocity of rotorV

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1027–1042 (1999)
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Subscripts

rotorR
W wing

free stream conditiono
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